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Summary. A Cartesian shrink wrapping technique has been investigated in this study to 
construct triangular surface meshes for three-dimensional dirty geometries. The geometries 
dealt in this paper are defined by faceted representation with dirtiness such as non-
conforming edges, gaps and overlaps. The objective of the proposed technique is to deliver 
a way constructing triangular surface meshes for upstream solutions in design processes 
without extensive labors for healing dirtiness in complicated dirty geometries. A Cartesian 
grid is overlaid onto the dirty geometries and its cells are adaptively refined until target 
resolution is achieved while recording intersections with geometric facets in cells. An initial 
watertight shell called the wrapper surface is constructed by selectively extracting the 
boundary sides of intersected cells. The wrapper surface is improved by a subsequence of 
operations such as projecting nodes onto geometry, adjusting nodes on the geometry and 
editing local triangular faces to achieve better approximation. The meshes generated using 
the presented technique may not be geometrically accurate but their quality is good enough 
to quickly deliver upstream fluid analysis solutions with significantly reduced engineering 
time for problems of extreme complexity such as the full underhood fluid/thermal analysis 
for automobiles. Mesh generation experiments have been carried out for complicated ge-
ometries and results from some applications are presented in this paper. 

1. Introduction 

Automatic mesh generation has become an essential tool for the finite ele-
ment or finite volume analyses of practical engineering problems. The ge-
ometries of the problems are defined as CAD data and access to informa-
tion stored in CAD data can be provided either through geometric 



394 Y.K. Lee et al.

modeling kernel or exporting the data in a format loadable into the target 
system [BWS03]. The IGES and STEP are most commonly used protocols 
for exchanging CAD data from one CAD system to the other system. Even 
though the STEP normally delivers better translation results than IGES 
does by providing information with representations and global tolerances, 
immigration of CAD data from one system to the other often results in 
dirty geometries containing gaps, holes, overlaps and non-conformal edges 
which do not exist in the native data. The inconsistency of tolerant model-
ing methods in two systems is one of major reasons causing dirtiness in the 
imported geometry. Another source of dirty geometries often ignored is the 
urgent need of upstream solutions in practice. In such cases, engineers 
have to carry out simulation even before all the parts in the model have not 
been designed by leaving small voids or using similar parts in their legacy 
library.

Imbedding the mesh generation system in CAD systems can be a way to 
avoid the dirtiness from happening, since the meshing operation can be 
applied on the native data without translation. The cost for imbedding is 
extremely expensive and it cannot be done often due to issues other than 
technical ones. An alternative for imbedding is to develop the mesh gen-
eration system inter-operatable with CAD systems. The development cost 
for this framework is lower than that of imbedding. However, this ap-
proach needs both the CAD and the mesh generation system to be avail-
able locally. In addition, the CAD data and the mesh data should be man-
aged separately afterward. 

Most conventional approach is to heal the dirtiness by directly editing 
geometric entities of dirty geometries. Manual healing for dirty geometric 
models is very labor intensive and time consuming as engineers should de-
structively replace the old geometric entities using sophisticated reasoning. 
An investigation was carried out for detail suppression using topological 
modifications and the concept of virtual topology was suggested to define 
topologies of problems using underlying dirty geometries without exten-
sive editing [SBC97]. Yet cleaning up dirty geometries requires consider-
able user interactions. 

While the previous algorithms intend to fix dirtiness in CAD models, 
the scope of this study is focused on generation of meshes without altering 
the input geometries. A major bottleneck from dirty geometries to 3D fluid 
simulations lies in constructing watertight surface meshes as the subse-
quent tetrahedral volume mesh generation is relatively straightforward. 
The Cartesian grid approach and shrink wrapping technique are employed 
to tackle the problem in the present study. The shrink wrapping approach 
was proposed by Kobbelt et al. [KVL99] In their approach, a plastic mem-
brane is wrapped around an object and shrunk either by heating the mate-
rial or by evacuating the air from the space in between the membrane and 
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the object’s surface. Theoretically, the plastic skin provides an exact im-
print of the given geometry at the end of process. The problems in apply-
ing their technique to dirty geometry meshing are, first, the construction of 
wrapping membrane surface is difficult and, second, the projection opera-
tor may not always provide reliable results to compute traction and relaxa-
tion due to the nature of dirtiness. Thus, the Cartesian grid approach is in-
troduced to construct the wrapping (or wrapper) surface and geometric 
modification on the surface is taken to improve closeness of the wrapper 
surface to the given geometry. 

The Cartesian grid generation is a well-established technique. Basically, 
it overlays an axis-aligned structured grid onto the geometry of a problem 
and takes a part of the grid, which is in the region of interest. Later, the 
nodes near the input geometry can be repositioned or local structure of 
mesh can be modified. The octree technique for constructing tetrahedral 
meshes can be classified into this technique as it checks intersections be-
tween the cells in the tree and the input geometry and refines each cell in 
the region of interest based on intersecting pattern [She85]. Schneider is an 
early investigator with full hexahedral elements for 3D volume mesh gen-
eration [Sch95]. Aftosmis and his colleague presented a technique clipping 
geometric facets with Cartesian cells and using such information in fluid 
simulations [ABM97] and an extended technology has been used in ex-
tracting large scale models such as building geometries using shape pro-
files [WCG05]. Wang extended the application of this technique to dirty 
geometry cases [ZF02]. He pointed out that the Cartesian mesh generation 
is tolerable to dirtiness of geometries as long as the region of interest can 
be classified. And the zigzag boundary of the meshes can be improved us-
ing the best approximation available. There have been active development 
works to exploit such technology in extremely complicated applications 
with many components and some dirtiness in industrial field [CDA06, 
CEI06, CFD06] but few articles have been published in the open literature. 
More recently, Boschoff and Pavic carried out an extensive research for 
extracting clean surface meshes from architectural models containing 
penetrating and touching components [BP05]. 

2. Outline of the Proposed Algorithm 

The major difficulty in generating 3D volume meshes for dirty geometries 
for fluid simulations with traditional mesh generation tools is to make the 
dirty geometry clean so that the meshing tools can be applied step by step, 
for instance, from edge meshing to surface meshing and, then, to volume 
meshing. The main idea of the technique presented is (1) to construct a
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representation from underlying Cartesian grid and (2) improve the surface 
mesh while maintaining water-tightness for better approximation to the 
original geometry. The watertight faceted representation (or surface mesh) 
may not precisely represent geometric details of the model but, at least, 
provides a quality surface mesh for the subsequent tetrahedral volume 
mesh generation and, eventually, the upstream fluid simulation. The two 
phases can be concisely summarized as follows. 

Overlaying Cartesian grid and extracting wrapping surface: A simple 
Cartesian grid of small number of cells is overlaid to the input geometry. 
The cells in the grid are refined until all of them satisfy criteria. The re-
finement for Cartesian cells is carried out while checking intersections be-
tween cells and the input geometry. Given the intersecting cells, all the 
non-intersected cells are classified into regions bounded by the intersecting 
cells. By collecting outer front of intersecting cells, it is possible to con-
struct a watertight surface, so-called the wrapper surface, for each region. 

Modifications of wrapper surface: In general, the initial wrapper surface 
represents the topology of a volume collectively defined by the input sur-
faces. However, the detailed geometry of the wrapper surface is far differ-
ent from that of the input volume. The wrapper surface is modified by ad-
justing nodal positions or editing local connectivity of nodes to get better 
geometric approximation to the input geometry. 

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

Overlaying

Cartesian grid

and intersection

computations

Extracting water-

tight shell(s) of

intersecting cells

Projecting

shell onto

geometry

Improving

quality of

geometric

approximation

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

Overlaying

Cartesian grid

and intersection

computations

Extracting water-

tight shell(s) of

intersecting cells

Projecting

shell onto

geometry

Improving

quality of

geometric

approximation

Fig. 1. Schematic description of wrapping procedure 

As briefly demonstrated in Figure 1, it is always possible to construct a 
watertight surface approximating the volume boundary by extracting the 
connected boundary faces of the intersected cells. The typical case in 
which the previous statement is not true is when a cell completely falls be-
tween gaps, so-called invisible gap [WS02]. However, geometries in prac-
tice are reasonably well defined and the failure would not happen if cells 
around gaps are larger than gap distance. 

watertight surface mesh for a dirty geometry by extracting a closed surface 
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3. Initial Wrapper Surface Generation 

The first phase of the current technique is to construct a rough approxima-
tion for the input dirty geometry, the wrapper surface. This section de-
scribes how to generate the initial wrapper surface using the Cartesian grid 
technique.

3.1 Initial Cartesian Grid Generation 

The faceted representation such as the stereolithography (STL) format is 
used to define the input geometry in this study. The STL format is popular 
due to its simplicity and portability. The facets in the geometry are stored 
in a search tree to be used for the intersection checks and projection in this 
study.

A uniform Cartesian grid is overlaid on the input geometry and its cells 
are adaptively refined later. The Cartesian grid is defined with cells and 
faces. In this paper, cells are defined with their six faces, locations and di-
mensions. Each face records its left and right neighbor cells. They also 
store references to child faces in case of refinement. Vertices are not used 
because they are not necessary [ABM97].

3.2 Adaptation of the Grid 

Starting from the initial grid, an adaptive grid is constructed by gradually 
refining cells until all cells satisfy give size criteria. The size functions 
[ZBS02] are used to define the desired local sizes. While the curvature size 
function generally regards quality of geometric approximation, the prox-
imity size functions may result topological difference of surface meshes 
obtained. For example as shown in Figure 2, insufficient refinement be-
tween gaps in a single connected simple geometry results a double con-
nected representation. The problem is resolved only after two more re-

finement for cells (see Figure 2(b)). In 2D cases, cells of size 2/2G  are 
required to ensure that the gaps are resolved regardless to orientations and 

translations. Similarly, the factor becomes 3/2G  in 3D cases. The 
maximum difference of refinement between neighboring cells is limited to 
1 both for simplicity in the data structure and smooth transition of cell 
sizes.
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3.3 Extracting Initial Wrapper Surface 

In the adapted Cartesian grid, there may be several groups of contiguous 
non-intersecting cells, the regions. A region may represent a virtual vol-
ume. In complicated models, there are multiple virtual volumes and geo-
metric complexity often results exceptional cases. 

Let us paint cells intersecting the input geometry in a simple grid shown 
in Figure 3(a). Naturally, those cells form virtual walls which separate 
non-intersecting cells into regions. Starting from a side of an intersecting 
cell on the exterior region, a closed shell can be extracted by following 
neighboring boundary sides of intersecting cells (see Figure 3(b)). There 
might be exceptional cases as shown in the interior regions causing non-
manifold connection and fictitious regions. The intersection status of some 
cells should be manipulated to resolve such cases. 
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Fig. 2. Proximity size function to resolve gaps 

Fig. 3. Nonmanifoldness and fictitious region 
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4. Improvement of Wrapper Surfaces 

In general, the initial wrapper surface extracted from the Cartesian grid 
topologically represents the virtual volume that is desired to recover. How-
ever, its geometric details, the zigzag configurations, are far different from 
the desired geometry. The remaining procedure of the developed technique 
is to improve such poor geometric approximation that it represents the in-
put geometry better. This is done by adjusting node positions and locally 
editing triangular elements. 

4.1 Projection of Nodes 

The first step for improving the wrapping surface is to move nodes of the 
zigzagged wrapper surface onto the input geometry. The simplest way is to 
project the nodes onto the nearest points on the input geometry. However, 
the nearest point projection may not give desired results as schematically 
shown in Figure 4. 

Fig. 4. Abnormal projection of node 

Due to the nature of the current approach, it is obvious that all the nodes 
are all inside of the volume. (Or all nodes should be outside of the volume 
if the exterior wrapper surface was taken.) Thus all nodes should be pro-
jected to either outward or inward. An approximated normal vector, N
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where F

i
n  is a normal vector of its adjacent face and N

v
n  is the averaged 

normal vector of them. When a node is found to have the sign of inner 
product of its approximated normal vector and projection vector that is in-
consistent to those of its neighboring nodes, some preconditioning such as 
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a weighted Laplacian smoothing should be done to prevent invalid projec-
tion.

In many practical cases, there are distinctive features on the boundary 
such as sharp edges and boundary between two zones. Often, it is highly 
desired to restore such features in the wrapper surface. In addition to the 
projection onto the surface, nodes in the vicinity of feature curves in the 
geometry are projected onto the feature curves. For a given feature curve, 
the closest nodes from the two ends are found on the wrapper surface and a 
path between the nodes is traced by using the feature curve as a guide. This 
procedure is basically traveling through mesh edges from one end node to 
the other while comparing distance to the feature curve and dot product of 
the edge vectors and the feature curve tangential vector. The tracing may 
fail to identify a reliable path and further investigation is undergoing. Even 
after identifying a reliable path, it is often observed that the compulsive 
projection of the nodes onto the feature curves deteriorates the configura-
tions of neighboring faces. The projection of nodes is carried out in an in-
cremental manner while checking validity of neighboring faces. 

4.2 Editing Local Connectivities 

In general, a finer initial wrapper surface provides better approximation 
for the input geometry after the projection. However, there may be very 
slender and skewed triangles. A set of standard local modification opera-
tions for triangles is used to improve such undesirable configurations fur-
ther.

Edge collapsing: An edge that is unacceptably shorter than its neighbor-

Edge splitting: If an edge is too long comparing to its neighboring 
edges, then a new node is introduced at its center and its two adjacent faces 
are divided into four triangles in Figure 5(b). The edge splitting is also 
used to improve skewed triangles. 

Edge swapping: The edge swapping shown in Figure 5(c) can be very 
effective to improve the closeness of the faces to the geometry as well as 
to improve skewness of slender triangles. 

ing edges is removed by merging its two end nodes as shown in Figure 5 (a). 
 Also, this operation is used to coarsen surface meshes [GH97]. 

Y.K. Lee et al.
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Fig. 5. Local mesh editing 

4.3 Node Smoothing 

Mostly, a weighted Laplacian smoothing [Her76] is used to improve 
skewed triangles by repositioning nodes. The nodes are projected back to 
the input geometry afterward. When a large number of iterations were ap-
plied to improve triangular quality, excessive smoothing deteriorates de-
tails of configurations and makes projection of nodes back to the geometry 
harder by moving nodes too far from the geometry. In such cases, en-
hanced smoothing techniques preserving features and volumes can be very 
effective [Tau95, VMM99, ZF02]. 

4.4 Zone Partitioning 

The wrapped surface can be separated into several regions based on the 
underlying surfaces. The closest input surfaces are checked for every faces 
and faces of same corresponding input surface are grouped and separated 
into a zone. This is particularly useful when boundary conditions should be 
applied for certain zones in the fluid simulations later. In many cases, there 
are many small fictitious zones after initial separation due to the fact that 
the wrapper zone boundaries do not exactly follow those of input surfaces. 
In such cases, the faces in small islands are redistributed to neighboring 
larger zones. 

5. Mesh Generation Examples 

The presented algorithms are implemented in TGrid, a preprocessor for 
FLUENT solver. The developed mesh generator has been exercised on a 
set of example problems and the results are presented in the following sec-
tions. The presented examples include a simple geometry to graphically 
demonstrate the meshing procedure as well as fairly complicated geome-
tries having intersecting facets to validate effectiveness of the proposed 
technique.
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5.1 Transport Aircraft: General Wrapping Procedure 

A relatively simple example is taken in this section to demonstrate the 
typical mesh generation procedure developed. 

The model is an artificial transportation aircraft which is composed of 
five separate parts – fuselage, two wings and two sheet metal parts joining 
the fuselage and wings.  An initial Cartesian grid is overlaid to the input 
geometry shown in Figure 6(a) and the configurations of intersected cells 
can be shown as in Figure 6(b). The connected exterior faces of the cells 
were extracted and the faces were triangulated based on predefined pattern 
in terms of hanging node configurations. Figure 6(c) shows the initial 
shrink wrapped surface after projection. The configuration in Figure 6(c) 
was improved using the smoothing, local mesh editing, etc. The final mesh 
is presented in Figure 6(d) after the zone partitioning. 

cells; (c) Initial wrapper surface; (d) Final wrapper surface after improvements 
Fig. 6. Typical mesh generation procedure. (a) Input geometry; (b) Intersected Cartesian 
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The following figure shows the minor dirtiness of the model. The part 
joining the wing and the fuselage does not share identical nodes and edges 
with either parts and some portion is penetrating into the fuselage. 

Fig. 7. Dirtiness in aircraft model 

Fig. 8. Cartesian grid lines on cutting plane 

Figure 8(a) displays the gridlines of the underlying Cartesian grid on a 
cutting plane. The white lines are on cells intersecting the input geometric 
facets. The regions of different shades in Figure 8(b) represent that they 
are in separated regions bounded by the intersected cells shown as the 
white region. 



404

In the existence of distinctive edges, so-called feature lines, in the initial 
geometry, such features can be restored in the final mesh by projecting 
nodes onto the feature lines as shown in Figure 9. 

Fig. 9. Feature line recovery 

5.2 Combined Engine Block 

The second example in this paper is a V8 engine (see Figure 8(a)). The 
model contains three types of typical dirtiness to be dealt in dirty geometry 
meshing, intersections by penetrating parts, holes due to missing parts and 
unreliable facets due to poor triangulation common in STL files. Figure 
8(b) highlights such dirtiness in circles. 

(a) Combined engine block.    (b) Three types of dirtiness 

Fig. 10. V8 engine 

In general, any holes whose sizes are larger than cells in the Cartesian 
grid may result leakages in wrapping procedure. Thus such holes are de-
sired to be filled prior to the wrapping operation. However, it is almost im-
possible to identify such holes in many complicated models in practice. If 
a model is wrapped with leakages due to such holes, the resulting wrapped 
surface is folded at a certain location, where the leakage occurs and the 
wrapper surface propagates into the inside of the volume. In such case, a 

Y.K. Lee et al.
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pair of faces can be chosen and the path between them can be tracked as 
shown in Figure 11 and the location of the hole should lie on the path. The 
hole should be resolved by adding additional facets manually. 

Figure 12 shows a contour plot displaying the distance of each face cen-
ter to the underlying input geometry. This plot can be exploited to quickly 
identify locations where higher resolutions with smaller cells are required 
if necessary. 

Fig. 11. Hole identification with path 
tracking

Fig. 12. Distribution of distance between face 
centers and underlying geometry 

Figure 13(a) illustrates noisy zigzag configurations along the zone 
boundaries after partitioning mentioned in the section 4.6. The difficult 
cases are to recovery smooth boundary when there is no explicit boundary 
between the two zones in the underlying geometry, for instance, a pair of 
parts penetrating each other. In such cases, the nodes on the zigzag bound-
ary can be projected onto both parts alternatively and the boundary forms a 
smooth line as shown in Figure 13(b). 

Fig. 13. Zone partitioning and boundary recovery 
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The CPU time complexity for Cartesian grid generation and region 
separation is shown in Figure 14 with a linear trend line. The experiment 
was done using a Linux machine with 2 Pentium 4 (3.4GHz) processors. 
The CPU times spent for subsequent modifications such as smoothing, 
swapping and coarsening were excluded as they are interactive operations 
which are triggered one after the other. From the latest refinement stage of 
8,882k cells, 4.12 million triangles were extracted into the initial wrapper 
surface and it took 298 seconds to extract those triangles, incrementally 
project onto the input geometry and improve severely skewed triangles by 
edge collapsing and swapping. 
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Fig. 14. CPU time complexity for Cartesian grid generation and region generation 

5.3 Meshing For Underhood and External Aero-Simulation 

The example in this section is taken to illustrate an application of the 
developed mesh generator for a model of industrial complexity and to dis-
cuss the turnaround time in industrial applications. The model for a whole 
truck body is presented in Figure 15(a) and it contains more than 1250 as-
sembly parts including ones in underhood shown in Figure 15(b). The 
original geometry contains 473156 facets with 237761 vertices. 

Several resolution levels have been tested and numerical experiment 
carried out using a AMD 64bit Opteron machine shows that the developed 
mesh generator takes 3.5 GB for 10 million cells and spends 1 hour to gen-
erate 60 million cells with intersection checks. The truck body was placed 
in an artificial wind tunnel and wrapped with it. The final wrapper surface 
consists of roughly 2 million faces and 1 million nodes after coarsening. It

Y.K. Lee et al.
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Fig. 15. Truck model for underhood thermal management simulation 

took roughly 1 man week to construct the wrapped surface mesh ready for 
tetrahedral volumetric mesh generation from the initial STL files including 
hole filling and tailored mesh generation and connection for critical parts 
such as the heat exchanger. 

The volume mesh generation was carried out mainly with tetrahedral 
elements and wedge prism layers were applied to some parts. Several fail-
ures occurred due to poor triangular quality and excessively close prox-
imity between opposing faces. The final volume mesh used for the fluid 
simulation contains 6.8 million cells with 0.7 million interior nodes with 
the boundary entities mentioned prior. Figure 17 shows streamlines and 
pressure distributions obtained by the simulation. 
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   Fig. 16. Configurations of final wrapper surface for 3D volume mesh generation 

       
Fig. 17. Streamlines and pressure distributions from CFD simulations 
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6. Discussions and Future Works 

A mesh generation technique has been investigated to construct triangular 
3D surface meshes for dirty geometries and applications of the developed 
mesh generator have been presented to demonstrate effectiveness of the 
proposed technique. The proposed algorithm constructs initial watertight 
triangular meshes called the wrapper surfaces from the Cartesian grid 
overlaid onto the input dirty geometries by analyzing intersections of its 
cells. The final wrapper surface is obtained by gradually improving until a 
quality surface mesh is achieved to proceed to the subsequent tetrahedral 
volumetric mesh generation with. As the intersection check in Cartesian 
grid generation is tolerant to geometric dirtiness to a certain extent, it is 
possible to reduce a significant amount of user interactions that were nec-
essary in traditional geometric healing. 

Further works are under investigation in some areas. For example, it 
will be necessary to improve memory efficiency to exploit the presented 
technique on extreme applications such as combined fluid simulations of 
external aero, underhood thermal management and cabin HVAC. The cells 
in the presented study are represented a face-based unstructured data struc-
ture. A comparative study is undergoing using the octree data structure. 
Also, several key improvements should be made to deliver special need to 
construct meshes for volumes with thin surfaces attached to. Automated 
hole fixing is another challenging issue. The two major problems are, first, 
to identify a hole and, second, resolve it. According to our experience, the 
hole can be an artifact one caused by missing faces as well as structural 
one, for example, a hole on a sheet metal component. The former is rela-
tively easier to detect due to the existence of free mesh edges each having 
only one connected face. The later often appears clean as the thin sheet 
metal is defined very close two surfaces that are fully connected to 
neighboring surfaces. In the existence of holes, the traditional way is to 
patch them with extra triangles manually. An interesting alternative is to 
coarsen the cells around a hole so that the hole does not appear in the 
wrapper surface. Further study will be carried out for this issue. 
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